106 research outputs found

    A Two-Level Approach to Large Mixed-Integer Programs with Application to Cogeneration in Energy-Efficient Buildings

    Full text link
    We study a two-stage mixed-integer linear program (MILP) with more than 1 million binary variables in the second stage. We develop a two-level approach by constructing a semi-coarse model (coarsened with respect to variables) and a coarse model (coarsened with respect to both variables and constraints). We coarsen binary variables by selecting a small number of pre-specified daily on/off profiles. We aggregate constraints by partitioning them into groups and summing over each group. With an appropriate choice of coarsened profiles, the semi-coarse model is guaranteed to find a feasible solution of the original problem and hence provides an upper bound on the optimal solution. We show that solving a sequence of coarse models converges to the same upper bound with proven finite steps. This is achieved by adding violated constraints to coarse models until all constraints in the semi-coarse model are satisfied. We demonstrate the effectiveness of our approach in cogeneration for buildings. The coarsened models allow us to obtain good approximate solutions at a fraction of the time required by solving the original problem. Extensive numerical experiments show that the two-level approach scales to large problems that are beyond the capacity of state-of-the-art commercial MILP solvers

    Sequential Linear Integer Programming for Integer Optimal Control with Total Variation Regularization

    Full text link
    We propose a trust-region method that solves a sequence of linear integer programs to tackle integer optimal control problems regularized with a total variation penalty. The total variation penalty allows us to prove the existence of minimizers of the integer optimal control problem. We introduce a local optimality concept for the problem, which arises from the infinite-dimensional perspective. In the case of a one-dimensional domain of the control function, we prove convergence of the iterates produced by our algorithm to points that satisfy first-order stationarity conditions for local optimality. We demonstrate the theoretical findings on a computational example

    State elimination for mixed-integer optimal control of partial differential equations by semigroup theory

    Get PDF
    Mixed-integer optimal control problems governed by partial differential equations (MIPDECOs) are powerful modeling tools but also challenging in terms of theory and computation. We propose a highly efficient state elimination approach for MIPDECOs that are governed by partial differential equations that have the structure of an abstract ordinary differential equation in function space. This allows us to avoid repeated calculations of the states for all time steps, and our approach is applied only once before starting the optimization. The presentation of theoretical results is complemented by numerical experiments

    An Optimal Control Model of Technology Transition

    Get PDF
    This paper discusses the use of optimization software to solve an optimal control problem arising in the modeling of technology transition. We set up a series of increasingly complex models with such features as learning-by-doing, adjustment cost, and capital investment. The models are written in continuous time and then discretized by using different methods to transform them into large-scale nonlinear programs. We use a modeling language and numerical optimization methods to solve the optimization problem. Our results are consistent with ndings in the literature and highlight the impact the discretization choice has on the solution and accuracy.

    A multidimensional filter algorithm for nonlinear equations and nonlinear least-squares

    Get PDF
    • …
    corecore